Virtualitics wraps up 2021 Caltech data science hackathon

Virtualitics wraps up exciting data science hackathon with Caltech students leveraging the power of Virtualitics AI Platform to solve unique business cases and challenges.

We are proud to have just wrapped up our Data Science Hackathon for Caltech students in which they leveraged the power of Virtualitics AI Platform to solve unique business cases in the Bioinformatics and Predictive Maintenance & IoT spaces.

Each team consisted of 2-5 students where they competed for $9000 in prizes and internship/full-time opportunities with the Virtualitics AI and Engineering teams. Within 24 hours of gaining access to VIP students were able to immediately leverage the speed and ease of use of VIP’s augmented analytical tools to garner key insights. 

Virtualitics AI Platform enables you to augment your analytical practices to easily find, visualize, and share insights from complex data sets 100X faster than traditional business intelligence tools. VIP creates a no-code/low code environment where users can leverage patented ML & AI models to analyze data at the speed of now. VIP helps identify and detect correlations within your data at a record pace.

🏆 Check out the winners!


Predictive Maintenance & IoT

🥇 Solving Supply Chain Inefficiencies using VIP (Team 11)

Team Members: Esmir Mesic, Ian Fowler, Devin Hartzell, Krish Mehta

Caltech students leveraged Virtualitics AI Platform to identify inefficiencies in a company’s supply chain and provided recommendations on alternative warehouse locations.

 A global logistics company with records pertaining to supply chain needs to analyze their supply chain data. The students analyzed this data in order to identify and eliminate inefficiencies in the supply chain. 

The data is geospatial and has many features to analyze, some of which are categorical. Either of these factors make the data hard to visualize through common methods such as Excel and Matplotlib.

The team constructed features in Python to better analyze the tardiness of warehouse orders and geographically categorize them, and then used VIP to segregate the data by category in order to pinpoint inefficiencies in our supply chain. For instance, they found that moving operations for Mens’ Footwear from Moldova to Italy would reduce lateness in their orders.

VIP capabilities used:
Within VIP, generation of 2D and 3D histogramsbar,  scatterand violin plots allowed us to quickly conduct exploratory data analysis. Virtualitics AI Platform allowed us to investigate interesting parts of our data and begin to track down our root issue. Virtualitics Python API allowed us to seamlessly generate and visualize network graphs from geospatial data. This was the most intuitive way to view the data, essential for bringing us to our final insights. Virtualitics network explainability tool helped us understand the data better.




🥇 Drug Repurposing Using Network Analysis (Team 3)

Team Members: Kevin Huang, Anish Shenoy, Grace Lu, Jae Yoon Kim, Wesley Huang

Caltech students leveraged Virtualitics AI Platform to predict which drugs could be repurposed to treat certain diseases while accounting for drug-drug interactions.

The Objective was to identify which drugs could potentially be repurposed to treat different diseases based on network analysis of drug-target-interaction data.

The Challenge was to find which drugs could potentially be repurposed based on unstructured and difficult to process drug-bank data with drugs that have no known use for a given class of disease.

To solve this problem, Caltech students first processed their data to get the similarity between drugs based on their shared targets. They clustered their data to locate the candidates and verified their accuracy by comparing older and newer versions of their drug-target-interaction data to see if their candidates were indeed repurposed after medical research.

VIP capabilities used
Network Graph Community Detection: clustering the data helped group drugs with similar properties.
Histograms: using the histogram feature helped figure out what the leading drug property of each cluster of drugs was to identify which drugs didn’t match this leading property and label it for repurposing.
Eccentricity: after displaying which repurposed drugs were successfully verified, we ran eccentricity to see if there was a pattern in them.

🥈  Multiplexed single cell RNA-seq for network-based analysis of COVID-19 inflammatory response (Team 10) 

Team Members: Saehui Hwang, Liam Silvera, Archie Shahidullah

Caltech students leveraged Virtualitics Immersive platform (VIP) to create network graphs to visualize how different conditions affect gene expression in multiplexed single cells of COVID-19 inflammatory response. 

Honorable Mention: Differential Causal Gene Networks in Asthma (Team 1)

Team Members: Agnim Agarwal, Pranav Patil, Brandon Guo, Neha Dalia

Caltech students leveraged Virtualitics Immersive Platform to identify genes independently correlated with asthma to determine underlying causal relationships.

Related Articles

Federal Tech Podcast Ep. 131 Exploring & Understanding Data

The Role Of AI In Supporting Business Analysts

Startup pitches AI tool to prevent Pentagon procurement blunders

The U.S. military is exploring a range of artificial intelligence capabilities, from predictive maintenance of ICBMs to analyzing reams of satellite data.

Virtualitics Makes Built In’s 2024 Best Places to Work List for Third Consecutive Year

Annual Built In Award Recognizes Virtualitics as One of the 50 Best Startups to Work for in Los Angeles PASADENA, Calif, February 6, 2024 — Virtualitics, a

Caltech Spinoff Gives Back to the Place Where It All Began

Support for Caltech's Computing, Data, and Society Program Fellows will boost research in artificial intelligence (AI). In the early 2010s, data scientist and entrepreneur Michael Amori

AI-Guided Integrated Resource Optimization for Mission Readiness

Predictive maintenance has steadily been adopted across maintenance operations teams because it helps leaders figure out “what’s about to happen.” While those predictive maintenance systems