Is Unstructured Data the Future of Data Management?

Data isn’t just for business intelligence anymore; it’s a highly valuable corporate asset. In today’s enterprises, data is being used to advance the business and drive decision-making in many different ways.

For example, marketing and sales teams use data to target their marketing efforts and identify new opportunities for growth. In the logistics and transportation industries, data saves businesses money by allowing them to predict maintenance needs and optimize routes and fuel usage.

Even utility companies are harnessing the power of data analytics to forecast load and make cost-saving adjustments to power generation.

 

Why Effective Data Management Is Critical

Because data has become such an essential business commodity, how your organization manages its data matters more than ever.

The ubiquity of smart devices for business and personal use paired with increased adoption of the Internet of Things (IoT) and accelerated Industry 4.0 initiatives, there is a historically large amount of data being generated worldwide every day.

Although this data has the potential to provide high value to the enterprise, the data is really only useful if the business can extract meaningful, actionable information from it. All of this data must also be stored and backed up securely, which adds expense and complexity to data management.

 

Unstructured Data Advantages and Data Management Challenges

Many of today’s data management challenges stem from the fact that up to 90 percent of the world’s data is unstructured, and that number is only going up. According to some predictions, the amount of unstructured data will increase to 175 billion zettabytes by 2025.

To fully appreciate how unstructured data is impacting and changing the future of data management, it’s important to understand where the flood of unstructured data is coming from.

There is no question that we live in a connected society. Almost everything we do—from collaborating with coworkers to shipping inventory to heating and cooling our offices—is enabled and improved through the analysis of unstructured data.

Enterprises across many industries rely on unstructured data generated through:

  • Analytics from AI and machine learning algorithms
  • Sensor data
  • Functional data from IoT devices
  • Geospatial data
  • Weather data
  • Surveillance data
  • Productivity applications
  • Text files (e.g., emails, spreadsheets, chatbots) 

In fact, it is almost impossible to run a successful business today without accessing, analyzing, and visualizing the insights found within your unstructured data.

Main Challenges of Unstructured Data Management

Along with providing highly valuable business intelligence, unstructured data also presents some significant data management challenges.

 

Expense

Although the cloud is often touted as a low-cost alternative to traditional, in-house data storage solutions, the massive quantity of data that organizations are managing today can significantly increase costs for cloud-based storage.

To keep storage expenses in check, it’s helpful to evaluate all of your organization’s data and create separate storage strategies for data that is largely unchanging and data that is accessed and modified frequently.

The unchanging or “cold” data can be stored in unmanaged cloud-based storage, freeing up your budget for storing the “hot” data that requires regular backup and replication.

Legacy data management systems are another potential source of extra outlay. Legacy systems often do not play well with modern unstructured data management solutions, which can require custom-building a solution to effectively process and manage high volumes of unstructured data.

 

Complexity

Unstructured data also introduces additional complexity into enterprise data analytics. With a large amount of raw, unorganized data flowing in from many disparate sources, indexing is difficult and error-prone due to unclear structure and lack of predefined attributes.

This disorganization and lack of well-defined attributes makes it difficult for analysts to determine which datasets are relevant to a particular use case and whether the data is high-quality and trustworthy.

How Investing in Unstructured Data Management Will Improve Your Analytics

Despite the challenges inherent in managing unstructured data, the positive impact a solid strategy will have on the quality of your analytics—and, by extension, your business outcomes—makes the investment worthwhile.

At the highest level, an effective unstructured data management strategy provides all users, not just data scientists, with a comprehensive data story that can be used to drive decision-making throughout the enterprise.

When managed well, unstructured data adds flexibility to the types of insights that can be gathered from the data because it isn’t constrained by a fixed schema. This also makes it easier to collect, distill, and correlate information from heterogeneous sources.

From a practical standpoint, unstructured data management makes data portable and scalable throughout the organization so users can confidently take action on relevant insights, from enabling predictive analytics to improving operational decision-making to increasing marketing intelligence.

 

What’s Next for Unstructured Data Management?

As rapid technology adoption continues to define and shape the enterprise business landscape, many organizations are looking for ways to manage high volumes of unstructured data efficiently and profitably.

Virtualitics AI Platform leads the industry in AI-based data analytics and multi-dimensional visualizations to empower organizations in every industry to take control of their complex data management and put that data to work for them.

Don’t waste more effort trying to decipher your unstructured data. Contact Virtualitics to request a demo of Virtualitics AI Platform.

Related Articles

U.S. Air Force Rapid Sustainment Office (RSO) Selects Virtualitics as Part of a $975 Million IDIQ Warfighter Readiness Contract to Revolutionize Sustainment Operations

Virtualitics Named to the Inaugural DataTech50 List for 2024

Welcoming Patrick Nelligan and Jeff Johnson to Virtualitics’ Federal Advisory Team

Utilizing explainable AI applications

The 4 Key Principles of Explainable AI Applications

Manufacturing Tomorrow

Three Ways AI Improves Maintenance Operations for Manufacturers

AI Business

Conquering the Fear of Embracing AI

Virtualitics Wins 2024 Globee Awards for Innovation

Recognized for New AI-Powered Maintenance Decision Intelligence Application, AI and ML Technology, and CTO of the Year PASADENA, Calif., July 8, 2024 — Virtualitics, a

U.S. Air Force Rapid Sustainment Office (RSO) Selects Virtualitics as Part of a $975 Million IDIQ Warfighter Readiness Contract to Revolutionize Sustainment Operations

Multi-Year RSO Contract Underscores Company’s Commitment to Enhance Operational Readiness with AI-Powered Solutions PASADENA, Calif., Sept. 12, 2024 — Virtualitics, a leader in AI decision

Virtualitics Named to the Inaugural DataTech50 List for 2024

Company Recognized for AI-Powered Innovations in Data Management and Decision Intelligence in the Financial Services Market PASADENA, Calif., Sept. 5, 2024 — Virtualitics, a leader

Welcoming Patrick Nelligan and Jeff Johnson to Virtualitics’ Federal Advisory Team

We are proud to announce the addition of two extraordinary government leaders to the Virtualitics federal advisory team: Patrick Nelligan and Jeff Johnson. With a

Utilizing explainable AI applications

The 4 Key Principles of Explainable AI Applications

In an age where industries are increasingly being influenced by artificial intelligence, openness and trust in such systems are critical. Explainable AI (XAI) addresses these

Three Ways AI Improves Maintenance Operations for Manufacturers

Conquering the Fear of Embracing AI

Virtualitics named a Sample Vendor in 2024 Gartner Hype Cycle for Analytics and Business Intelligence.